Michael D Waters 1, Stafford Warren 2, Claude Hughes 3, Philip Lewis 4, Fengyu Zhang 5
Affiliations Expand
- PMID: 35023215
- DOI: 10.1002/em.22471
Abstract
This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro “host” cell mutagenicity of its active principle, β-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2′-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.
Keywords: 5-(2-chloroethyl)-2′-deoxyuridine; COVID-19 pandemic; favipiravir; molnupiravir; ribavirin; β-d-N4-hydroxycytidine.
© 2022 Environmental Mutagen Society.
Similar articles
- Molnupiravir versus favipiravir in at-risk outpatients with COVID-19: A randomized controlled trial in Thailand.Salvadori N, Jourdain G, Krittayaphong R, Siripongboonsitti T, Kongsaengdao S, Atipornwanich K, Sakulkonkij P, Angkasekwinai N, Sirijatuphat R, Chusri S, Mekavuthikul T, Apisarnthanarak A, Srichatrapimuk S, Sungkanuparph S, Kirdlarp S, Phongnarudech T, Sangsawang S, Napinkul P, Achalapong J, Khusuwan S, Pratipanawat P, Nookeu P, Danpipat N, Leethong P, Hanvoravongchai P, Sukrakanchana PO, Auewarakul P.Int J Infect Dis. 2024 Jun;143:107021. doi: 10.1016/j.ijid.2024.107021. Epub 2024 Mar 30.PMID: 38561040 Clinical Trial.
- Combined treatment of molnupiravir and favipiravir against SARS-CoV-2 infection: One + zero equals two?Eloy P, Le Grand R, Malvy D, Guedj J.EBioMedicine. 2021 Dec;74:103663. doi: 10.1016/j.ebiom.2021.103663. Epub 2021 Nov 9.PMID: 34768087 Free PMC article. No abstract available.
- The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model.Abdelnabi R, Foo CS, Kaptein SJF, Zhang X, Do TND, Langendries L, Vangeel L, Breuer J, Pang J, Williams R, Vergote V, Heylen E, Leyssen P, Dallmeier K, Coelmont L, Chatterjee AK, Mols R, Augustijns P, De Jonghe S, Jochmans D, Weynand B, Neyts J.EBioMedicine. 2021 Oct;72:103595. doi: 10.1016/j.ebiom.2021.103595. Epub 2021 Sep 24.PMID: 34571361 Free PMC article.
- Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review.Masyeni S, Iqhrammullah M, Frediansyah A, Nainu F, Tallei T, Emran TB, Ophinni Y, Dhama K, Harapan H.J Med Virol. 2022 Jul;94(7):3006-3016. doi: 10.1002/jmv.27730. Epub 2022 Apr 2.PMID: 35315098 Free PMC article. Review.
- Discovery, Development, and Patent Trends on Molnupiravir: A Prospective Oral Treatment for COVID-19.Imran M, Kumar Arora M, Asdaq SMB, Khan SA, Alaqel SI, Alshammari MK, Alshehri MM, Alshrari AS, Mateq Ali A, Al-Shammeri AM, Alhazmi BD, Harshan AA, Alam MT, Abida.Molecules. 2021 Sep 24;26(19):5795. doi: 10.3390/molecules26195795.PMID: 34641339 Free PMC article. Review.
Cited by
- Clinical antiviral efficacy of favipiravir in early COVID-19 (PLATCOV): an open-label, randomised, controlled, adaptive platform trial.Luvira V, Schilling WHK, Jittamala P, Watson JA, Boyd S, Siripoon T, Ngamprasertchai T, Almeida PJ, Ekkapongpisit M, Cruz C, Callery JJ, Singh S, Tuntipaiboontana R, Kruabkontho V, Ngernseng T, Tubprasert J, Abdad MY, Keayarsa S, Madmanee W, Aguiar RS, Santos FM, Hanboonkunupakarn P, Hanboonkunupakarn B, Poovorawan K, Imwong M, Taylor WRJ, Chotivanich V, Chotivanich K, Pukrittayakamee S, Dondorp AM, Day NPJ, Teixeira MM, Piyaphanee W, Phumratanaprapin W, White NJ; PLATCOV Collaborative Group.BMC Infect Dis. 2024 Jan 15;24(1):89. doi: 10.1186/s12879-023-08835-3.PMID: 38225598 Free PMC article. Clinical Trial.
- Uridine-cytidine kinase 2 potentiates the mutagenic influence of the antiviral β-d-N4-hydroxycytidine.Xu Z, Flensburg C, Bilardi RA, Majewski IJ.Nucleic Acids Res. 2023 Dec 11;51(22):12031-12042. doi: 10.1093/nar/gkad1002.PMID: 37953355 Free PMC article.
- A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes.Sanderson T, Hisner R, Donovan-Banfield I, Hartman H, Løchen A, Peacock TP, Ruis C.Nature. 2023 Nov;623(7987):594-600. doi: 10.1038/s41586-023-06649-6. Epub 2023 Sep 25.PMID: 37748513 Free PMC article.
- N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody.Zibat A, Zhang X, Dickmanns A, Stegmann KM, Dobbelstein AW, Alachram H, Soliwoda R, Salinas G, Groß U, Görlich D, Kschischo M, Wollnik B, Dobbelstein M.iScience. 2023 Aug 30;26(10):107786. doi: 10.1016/j.isci.2023.107786. eCollection 2023 Oct 20.PMID: 37731621 Free PMC article.
- An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants.Liu J, Mao F, Chen J, Lu S, Qi Y, Sun Y, Fang L, Yeung ML, Liu C, Yu G, Li G, Liu X, Yao Y, Huang P, Hao D, Liu Z, Ding Y, Liu H, Yang F, Chen P, Sa R, Sheng Y, Tian X, Peng R, Li X, Luo J, Cheng Y, Zheng Y, Lin Y, Song R, Jin R, Huang B, Choe H, Farzan M, Yuen KY, Tan W, Peng X, Sui J, Li W.Nat Commun. 2023 Aug 25;14(1):5191. doi: 10.1038/s41467-023-40933-3.PMID: 37626079 Free PMC article.
References
REFERENCES
1.Aaron, C.S., Bolcsfoldi, G., Glatt, H.R., Moore, M., Nishi, Y., Stankowski, L. et al. (1994) Mammalian cell gene mutation assays working group report. Mutation Research, 312(3), 235-239.
2.Adedeji, A.O. & Sarafianos, S.G. (2014) Antiviral drugs specific for coronaviruses in preclinical development. Current Opinion in Virology, 8, 45-53.
3.Agostini, M.L., Pruijssers, A.J., Chappell, J.D., Gribble, J., Lu, X., Andres, E.L. et al. (2019) Small-molecule antiviral β-d-N4-Hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. Journal of Virology, 93(24), e01348-19.
4.Agostini, M.L. et al. (2018) Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio, 9(2), e00221-18.
5.Agrawal, U., Raju, R. & Udwadia, Z.F. (2020) Favipiravir: a new and emerging antiviral option in COVID-19. Medical Journal Armed Forces India, 76(4), 370-376.
6.Albertini, R.J. (2001) HPRT mutations in humans: biomarkers for mechanistic studies. Mutation Research, 489(1), 1-16.
7.Albertini, R.J., Nicklas, J.A. & O’Neill, J.P. (1996) Future research directions for evaluating human genetic and cancer risk from environmental exposures. Environmental Health Perspectives, 3(Suppl 3), 503-510.
8.Albertini, R.J., Vacek, P.M., Carter, E.W., Nicklas, J.A., Squibb, K.S., Gucer, P.W. et al. (2015) Mutagenicity monitoring following battlefield exposures: longitudinal study of HPRT mutations in gulf war I veterans exposed to depleted uranium. Environmental and Molecular Mutagenesis, 56(7), 581-593.
9.Alexandrov, L.B. et al. (2020) The repertoire of mutational signatures in human cancer. Nature, 578(7793), 94-101.
10.Araten, D.J., Nafa, K., Pakdeesuwan, K. & Luzzatto, L. (1999) Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 5209-5214.
11.Badding, M., Gollapudi, B.B., Gehen, S. & Yan, Z. (2020) In vivo mutagenicity evaluation of the soil fumigant 1,3-dichloropropene. Mutagenesis, 35(5), 437-443.
12.Barnard, D.L., Hubbard, V.D., Burton, J., Smee, D.F., Morrey, J.D., Otto, M.J. et al. (2004) Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine. Antiviral Chemistry and Chemotherapy, 15(1), 15-22.
13.Barrett, A.D.T. (2018) West Nile in Europe: an increasing public health problem. Journal of Travel Medicine, 25(1), tay096.
14.Beyer, R.M., Manica, A. & Mora, C. (2021) Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Science of the Total Environment, 767, 145413.
15.Bhalli, J.A., Shaddock, J.G., Pearce, M.G., Dobrovolsky, V.N., Cao, X., Heflich, R.H. et al. (2011) Report on stage III Pig-a mutation assays using benzo[a]pyrene. Environmental and Molecular Mutagenesis, 52(9), 731-737.
16.Birkus, G., Hitchcock, M.J. & Cihlar, T. (2002) Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrobial Agents and Chemotherapy, 46(3), 716-723.
17.Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A. et al. (2003) Clinical features and shgort-term outcomes of 144 patients with SARS in the greater Toronto area. Journal of the American Medical Association, 289(21), 2801-2809.
18.Brodsky, R.A. (2014) Paroxysmal nocturnal hemoglobinuria. Blood, 124(18), 2804-2811.
19.Brown, D.M. & Phillips, J.H. (1965) Mechanism of the mutagenic action of hydroxylamine. Journal of Molecular Biology, 11, 663-671.
20.Cai, Q., Yang, M., Liu, D., Chen, J., Shu, D., Xia, J. et al. (2020) Experimental treatment with Favipiravir for COVID-19: an open-label control study. Engineering, 6(10), 1192-1198.
21.Cammerer, Z., Bhalli, J.A., Cao, X., Coffing, S.L., Dickinson, D., Dobo, K.L. et al. (2011) Report on stage III Pig-a mutation assays using N-ethyl-N-nitrosourea-comparison with other in vivo genotoxicity endpoints. Environmental and Molecular Mutagenesis, 52(9), 721-730.
22.Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G. et al. (2020) A trial of Lopinavir-ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 382(19), 1787-1799.
23.Chan, J.F. et al. (2013) Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. The Journal of Infection, 67(6), 606-616.
24.Chen, F., Chan, K.H., Jiang, Y., Kao, R.Y., Lu, H.T., Fan, K.W. et al. (2004) In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 31(1), 69-75.
25.Chen, T. et al. (2002) Mutations induced by alpha-hydroxytamoxifen in the lacI and cII genes of big blue transgenic rats. Carcinogenesis, 23(10), 1751-1757.
26.Chinello, P., Petrosillo, N., Pittalis, S., Biava, G., Ippolito, G., Nicastri, E. et al. (2017) QTc interval prolongation during favipiravir therapy in an ebolavirus-infected patient. PLoS Neglected Tropical Diseases, 11(12), e0006034.
27.Chung, D.-H., Sun, Y., Parker, W.B., Arterburn, J.B., Bartolucci, A. & Jonsson, C.B. (2007) Ribavirin reveals a lethal threshold of allowable mutation frequency for Hantaan virus. Journal of Virology, 81(21), 11722-11729.
28.Costantini, V.P., Whitaker, T., Barclay, L., Lee, D., McBrayer, T.R., Schinazi, R.F. et al. (2012) Antiviral activity of nucleoside analogues against norovirus. Antiviral Therapy, 17(6), 981-991.
29.Cox, R.M., Wolf, J.D. & Plemper, R.K. (2021) Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nature Microbiology, 6(1), 11-18.
30.Crotty, S. (2000) The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Medicine, 6, 1375-1379.
31.Davis, A.P. & Justice, M.J. (1998) An oak ridge legacy: the specific locus test and its role in mouse mutagenesis. Genetics, 148(1), 7-12.
32.De Clercq, E. (2016) Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochemical Pharmacology, 119, 1-7.
33.Dertinger, S.D., Bhalli, J.A., Roberts, D.J., Stankowski, L.F., Jr., Gollapudi, B.B., Lovell, D.P. et al. (2021) Recommendations for conducting the rodent erythrocyte Pig-a assay: A report from the HESI GTTC Pig-a workgroup. Environmental and Molecular Mutagenesis, 62(3), 227-237.
34.Dertinger, S.D., Camphausen, K., MacGregor, J.T., Bishop, M.E., Torous, D.K., Avlasevich, S. et al. (2004) Three-color labeling method for flow cytometric measurement of cytogenetic damage in rodent and human blood. Environmental and Molecular Mutagenesis, 44(5), 427-435.
35.Dertinger, S.D., Bryce, S.M., Phonethepswath, S. & Avlasevich, S.L. (2011) When pigs fly: immunomagnetic separation facilitates rapid determination of Pig-a mutant frequency by flow cytometric analysis. Mutation Research, 721(2), 163-170.
36.Desai, V.G., Lee, T., Delongchamp, R.R., Leakey, J.E.A., Lewis, S.M., Lee, F. et al. (2008) Nucleoside reverse transcriptase inhibitors (NRTIs)-induced expression profile of mitochondria-related genes in the mouse liver. Mitochondrion, 8(2), 181-195.
37.Divi, R.L., Einem, T.L., Leonard Fletcher, S.L., Shockley, M.E., Kuo, M.M., St Claire, M.C. et al. (2010) Progressive mitochondrial compromise in brains and livers of primates exposed in utero to nucleoside reverse transcriptase inhibitors (NRTIs). Toxicological Sciences, 118(1), 191-201.
38.Divi, R.L., Haverkos, K.J., Humsi, J.A., Shockley, M.E., Thamire, C., Nagashima, K. et al. (2007a) Morphological and molecular course of mitochondrial pathology in cultured human cells exposed long-term to zidovudine. Environmental and Molecular Mutagenesis, 48(3-4), 179-189.
39.Divi, R.L., Leonard, S.L., Walker, B.L., Kuo, M.M., Shockley, M.E., St Claire, M.C. et al. (2007c) Erythrocebus patas monkey offspring exposed perinatally to NRTIs sustain skeletal muscle mitochondrial compromise at birth and at 1 year of age. Toxicological Sciences, 99(1), 203-213.
40.Divi, R.L., Leonard, S.L., Kuo, M.M., Nagashima, K., Thamire, C., St. Claire, M.C. et al. (2007b) Transplacentally exposed human and monkey newborn infants show similar evidence of nucleoside reverse transcriptase inhibitor-induced mitochondrial toxicity. Environmental and Molecular Mutagenesis, 48(3-4), 201-209.
41.Dobrovolsky, V.N., Revollo, J., Pearce, M.G., Pacheco-Martinez, M.M. & Lin, H. (2015) CD48-deficient T-lymphocytes from DMBA-treated rats have de novo mutations in the endogenous Pig-a gene. Environmental and Molecular Mutagenesis, 56(8), 674-683.
42.Dong, L., Hu, S. & Gao, J. (2020) Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics, 14(1), 58-60.
43.Ehteshami, M., Tao, S., Zandi, K., Hsiao, H.M., Jiang, Y., Hammond, E. et al. (2017) Characterization of β-d-N(4)-hydroxycytidine as a novel inhibitor of chikungunya virus. Antimicrobial Agents and Chemotherapy, 61(4), e02395-16.
44.Elhajouji, A., Vaskova, D., Downing, R., Dertinger, S.D. & Martus, H. (2018) Induction of in vivo Pig-a gene mutation but not micronuclei by 5-(2-chloroethyl)-2′-deoxyuridine, an antiviral pyrimidine nucleoside analogue. Mutagenesis, 33(5-6), 407.
45.Escobar, P.A., Olivero, O.A., Wade, N.A., Abrams, E.J., Nesel, C.J., Ness, R.B. et al. (2007) Genotoxicity assessed by the comet and GPA assays following in vitro exposure of human lymphoblastoid cells (H9) or perinatal exposure of mother-child pairs to AZT or AZT-3TC. Environmental and Molecular Mutagenesis, 48(3-4), 330-343.
46.Europeam Medicines Agency 2020 Summary on compassionate use: Remdesivir Gilead. https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-r….
47.Eyer, L., Nougairède, A., Uhlířová, M., Driouich, J.S., Zouharová, D., Valdés, J.J. et al. (2019) An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor Galidesivir (BCX4430) and also attenuates the virus for mice. Journal of Virology, 93(16), e00367-19.
48.Ferron, F. (2018) Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences of the United States of America, 115, E162-E171.
49.Franco, E.J., Rodriquez, J.L., Pomeroy, J.J., Hanrahan, K.C. & Brown, A.N. (2018) The effectiveness of antiviral agents with broad-spectrum activity against chikungunya virus varies between host cell lines. Antiviral Chemistry & Chemotherapy, 26, 2040206618807580.
50.Freese, E., Bautz, E. & Freese, E.B. (1961) The chemical and mutagenic specificity of hydroxylamine. Genetics, 47, 845-855.
51.Furuta, Y., Gowen, B.B., Takahashi, K., Shiraki, K., Smee, D.F. & Barnard, D.L. (2013) Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research, 100(2), 446-454.
52.Furuta, Y., Takahashi, K., Fukuda, Y., Kuno, M., Kamiyama, T., Kozaki, K. et al. (2002) In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrobial Agents and Chemotherapy, 46(4), 977-981.
53.Furuta, Y., Takahashi, K., Kuno-Maekawa, M., Sangawa, H., Uehara, S., Kozaki, K. et al. (2005) Mechanism of action of T-705 against influenza virus. Antimicrobial Agents and Chemotherapy, 49(3), 981-986.
54.Galli, A., Mens, H., Gottwein, J.M., Gerstoft, J. & Bukh, J. (2018) Antiviral effect of ribavirin against HCV associated with increased frequency of G-to-a and C-to-U transitions in infectious cell culture model. Scientific Reports, 8(1), 4619.
55.Gane, E.J., Shiffman, M.L., Etzkorn, K., Morelli, G., Stedman, C.A.M., Davis, M.N. et al. (2017) Sofosbuvir-velpatasvir with ribavirin for 24 weeks in hepatitis C virus patients previously treated with a direct-acting antiviral regimen. Hepatology, 66(4), 1083-1089.
56.Geraghty, R.J., Aliota, M.T. & Bonnac, L.F. (2021) Broad-Spectrum antiviral strategies and nucleoside analogues. Viruses, 13(4), 667.
57.Gollapudi, B.B., Lynch, A.M., Heflich, R.H., Dertinger, S.D., Dobrovolsky, V.N., Froetschl, R. et al. (2015) The in vivo Pig-a assay: a report of the international workshop on genotoxicity testing (IWGT) workgroup. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 783, 23-35.
58.Gordon, C.J., Tchesnokov, E.P., Feng, J.Y., Porter, D.P. & Götte, M. (2020a) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. The Journal of Biological Chemistry, 295(15), 4773-4779.
59.Gordon, C.J., Tchesnokov, E.P., Woolner, E., Perry, J.K., Feng, J.Y., Porter, D.P. et al. (2020b) Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of Biological Chemistry, 295(20), 6785-6797.
60.Gordon, C.J., Tchesnokov, E.P., Schinazi, R.F., Götte, M. (2021) Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. The Journal of Biological Chemistry, 297(1), 100770.
61.Greenberg, S.B. (2016) Update on human rhinovirus and coronavirus infections. Seminars in Respiratory and Critical Care Medicine, 37(4), 555-571.
62.Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A. et al. (2020) Compassionate use of Remdesivir for patients with severe Covid-19. The New England Journal of Medicine, 382(24), 2327-2336.
63.Guerard, M. et al. (2013) Assessment of the genotoxic potential of azidothymidine in the comet, micronucleus, and Pig-a assay. Toxicological Sciences, 135(2), 309-316.
64.Hassanipour, S., Arab-Zozani, M., Amani, B., Heidarzad, F., Fathalipour, M. & Martinez-de-Hoyo, R. (2021) The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Scientific Reports, 11(1), 11022.
65.Hayashi, M., MacGregor, J.T., Gatehouse, D.G., Adler, I.D., Blakey, D.H., Dertinger, S.D. et al. (2000) In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring. Environmental and Molecular Mutagenesis, 35(3), 234-252.
66.Heddle, J.A. (1973) A rapid in vivo test for chromosomal damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 18(2), 187-190.
67.Heflich, R.H., Johnson, G.E., Zeller, A., Marchetti, F., Douglas, G.R., Witt, K.L. et al. (2020) Mutation as a toxicological endpoint for regulatory decision-making. Environmental and Molecular Mutagenesis, 61(1), 34-41.
68.Heflich, R.H. et al. (1996) DNA sequence analysis of hprt mutations in lymphocytes from Sprague-Dawley rats treated with 7,12-dimethylbenz[a]anthracene. Environmental and Molecular Mutagenesis, 28(1), 5-12.
69.Hernandez-Santiago, B.I., Beltran, T., Stuyver, L., Chu, C.K. & Schinazi, R.F. (2004) Metabolism of the anti-hepatitis C virus nucleoside beta-D-N4-hydroxycytidine in different liver cells. Antimicrobial Agents and Chemotherapy, 48(12), 4636-4642.
70.Hoeijmakers, J.H.J. (2009) DNA damage, aging, and cancer. New England Journal of Medicine, 361(15), 1475-1485.
71.Holman, W., Holman, W., McIntosh, S., Painter, W., Painter, G., Bush, J. et al. (2021) Accelerated first-in-human clinical trial of EIDD-2801/MK-4482 (molnupiravir), a ribonucleoside analog with potent antiviral activity against SARS-CoV-2. Trials, 22(1), 561.
72.Hou, Y.J., Chiba, S., Halfmann, P., Ehre, C., Kuroda, M., Dinnon, K.H., III et al. (2020a) SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 370(6523), 1464-1468.
73.Hou, Y. J. et al. 2020b SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182(2):429-446.e14.
74.Hu, T., Miller, C.M., Ridder, G.M. & Aardema, M.J. (1999) Characterization of p53 in Chinese hamster cell lines CHO-K1, CHO-WBL, and CHL: implications for genotoxicity testing. Mutation Research, 426(1), 51-62.
75.ICH 1997 ICH Harmonized Tripartite Guideline S2B, Genotoxicity: a standard battery for genotoxicity testing of pharmaceuticals.
76.Jacobs, M., Aarons, E., Bhagani, S., Buchanan, R., Cropley, I., Hopkins, S. et al. (2015) Post-exposure prophylaxis against Ebola virus disease with experimental antiviral agents: a case-series of health-care workers. The Lancet Infectious Diseases, 15(11), 1300-1304.
77.Janion, C. (1979) On the different response of salmonella typhimurium hisG46 and TA1530 to mutagenic action of base analogues. Acta Biochimica Polonica, 26(1-2), 171-177.
78.Janion, C. & Glickman, B.W. (1980) N4-hydroxycytidine: a mutagen specific for AT to GC transitions. Mutation Research, 72(1), 43-47.
79.Jin, Z., Kinkade, A., Behera, I., Chaudhuri, S., Tucker, K., Dyatkina, N. et al. (2017) Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs. Antiviral Research, 143, 151-161.
80.Johnson, G.E. (2012) Mammalian cell HPRT gene mutation assay: test methods. Methods in Molecular Biology, 817, 55-67.
81.Kabinger, F., Stiller, C., Schmitzová, J., Dienemann, C., Hillen, H.S., Höbartner, C. (2021) Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nature Structural & Molecular Biology. https://doi.org/10.1038/s41594-021-00651-0
82.Kaur, R.J., Charan, J., Dutta, S., Sharma, P., Bhardwaj, P., Sharma, P. et al. (2020) Favipiravir use in COVID-19: analysis of suspected adverse drug events reported in the WHO database. Infection and Drug Resistance, 13, 4427-4438.
83.Kennedy, S.R., Schmitt, M.W., Fox, E.J., Kohrn, B.F., Salk, J.J., Ahn, E.H. et al. (2014) Detecting ultralow-frequency mutations by duplex sequencing. Nature Protocols, 9(11), 2586-2606.
84.Kochhar, D.M., Penner, J.D. & Knudsen, T.B. (1980) Embryotoxic, teratogenic, and metabolic effects of ribavirin in mice. Toxicology and Applied Pharmacology, 52(1), 99-112.
85.Koenig, C.M., Beevers, C., Pant, K. & Young, R.R. (2018) Assessment of the mutagenic potential of Para-chloroaniline and aniline in the liver, spleen, and bone marrow of Big Blue rats with micronuclei analysis in peripheral blood. Environmental and Molecular Mutagenesis, 59(9), 785-797.
86.Kohler, S.W., Provost, G.S., Fieck, A., Kretz, P.L., Bullock, W.O., Sorge, J.A. et al. (1991) Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 88(18), 7958-7962.
87.Kumagai, Y., Murakawa, Y., Hasunuma, T., Aso, M., Yuji, W., Sakurai, T. et al. (2015) Lack of effect of favipiravir, a novel antiviral agent, on QT interval in healthy Japanese adults. International Journal of Clinical Pharmacology and Therapeutics, 53(10), 866-874.
88.Łagocka, Ryta, Dziedziejko V, Kłos P & Pawlik A 2021 Favipiravir in Therapy of Viral Infections. https://doi.org/10.3390/jcm10020273
89.Lambert, I.B., Singer, T.M., Boucher, S.E. & Douglas, G.R. (2005) Detailed review of transgenic rodent mutation assays. Mutation Research, 590(1-3), 1-280.
90.Lee, S.-K., Zhou, S., Baldoni, P.L., Spielvogel, E., Archin, N.M., Hudgens, M.G. et al. (2017) Quantification of the latent HIV-1 reservoir using ultra deep sequencing and primer ID in a viral outgrowth assay. JAIDS Journal of Acquired Immune Deficiency Syndromes, 74(2), 221-228.
91.Li, A.P., Gupta, R.S., Heflich, R.H. & Wassom, J.S. (1988) A review and analysis of the Chinese hamster ovary/hypoxanthine guanine phosphoribosyl transferase assay to determine the mutagenicity of chemical agents. A report of phase III of the U.S. Environmental Protection Agency Gene-Tox Program. Mutation Research, 196(1), 17-36.
92.Lindahl, J.F. & Grace, D. (2015) The consequences of human actions on risks for infectious diseases: a review. Infection Ecology & Epidemiology, 5, 30048.
93.MacGregor, J.T., Wehr, C.M. & Gould, D.H. (1980) Clastogen-induced micronuclei in peripheral blood erythrocytes: the basis of an improved micronucleus test. Environmental Mutagenesis, 2(4), 509-514.
94.Malone, B. & Campbell, E.A. (2021a) Molnupiravir: coding for catastrophe. Nature Structural & Molecular Biology, 28(9), 706-708.
95.Malone, B. & Campbell, E.A. (2021b) Publisher correction: Molnupiravir: coding for catastrophe. Nature Structural & Molecular Biology, 28(11), 955. https://doi.org/10.1038/s41594-021-00683-6
96.Manabe, T., Kambayashi, D., Akatsu, H. & Kudo, K. (2021) Favipiravir for the treatment of patients with COVID-19: a systematic review and meta-analysis. BMC Infectious Diseases, 21(1), 489-489.
97.Mayer, S.V., Tesh, R.B. & Vasilakis, N. (2017) The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers. Acta Tropica, 166, 155-163.
98.McDaniel, L.P., Ding, W., Dobrovolsky, V.N., Shaddock, J.G., Jr., Mittelstaedt, R.A., Doerge, D.R. et al. (2012) Genotoxicity of furan in big blue rats. Mutation Research, 742(1-2), 72-78.
99.Mei, N., McDaniel, L.P., Dobrovolsky, V.N., Guo, X., Shaddock, J.G., Mittelstaedt, R.A. et al. (2010) The genotoxicity of acrylamide and glycidamide in big blue rats. Toxicological Sciences, 115(2), 412-421.
100.Menendez-Arias, L. (2021) Decoding molnupiravir-induced mutagenesis in SARS-CoV-2. The Journal of Biological Chemistry, 297(1), 100867.
101.Meng, Q., Olivero, O.A., Fasco, M.J., Bellisario, R., Kaminsky, L., Pass, K.A. et al. (2007) Plasma and cellular markers of 3′-azido-3′-dideoxythymidine (AZT) metabolism as indicators of DNA damage in cord blood mononuclear cells from infants receiving prepartum NRTIs. Environmental and Molecular Mutagenesis, 48(3-4), 307-321.
102.Mercorelli, B., Palù, G. & Loregian, A. (2018) Drug repurposing for viral infectious diseases: how far are we? Trends in Microbiology, 26(10), 865-876.
103.Mittelstaedt, R.A., Manjanatha, M.G., Shelton, S.D., Lyn-Cook, L.E., Chen, J.B., Aidoo, A. et al. (1998) Comparison of the types of mutations induced by 7,12-dimethylbenz[a]anthracene in the lacI and hprt genes of big blue rats. Environmental and Molecular Mutagenesis, 31(2), 149-156.
104.Mittelstaedt, R.A., Smith, B.A. & Heflich, R.H. (1995) Analysis of in vivo mutation induced by N-ethyl-N-nitrosourea in the hprt gene of rat lymphocytes. Environmental and Molecular Mutagenesis, 26(4), 261-269.
105.Miura, D., Dobrovolsky, V.N., Kasahara, Y., Katsuura, Y. & Heflich, R.H. (2008a) Development of an in vivo gene mutation assay using the endogenous Pig-A gene: I. flow cytometric detection of CD59-negative peripheral red blood cells and CD48-negative spleen T-cells from the rat. Environmental and Molecular Mutagenesis, 49(8), 614-621.
106.Miura, D., Dobrovolsky, V.N., Mittelstaedt, R.A., Kasahara, Y., Katsuura, Y. & Heflich, R.H. (2008b) Development of an in vivo gene mutation assay using the endogenous Pig-A gene: II. Selection of Pig-A mutant rat spleen T-cells with proaerolysin and sequencing Pig-A cDNA from the mutants. Environmental and Molecular Mutagenesis, 49(8), 622-630.
107.Miura, D., Shaddock, J.G., Mittelstaedt, R.A., Dobrovolsky, V.N., Kimoto, T., Kasahara, Y. et al. (2011) Analysis of mutations in the Pig-a gene of spleen T-cells from N-ethyl-N-nitrosourea-treated fisher 344 rats. Environmental and Molecular Mutagenesis, 52(5), 419-423.
108.Monroe, J.J., Kort, K.L., Miller, J.E., Marino, D.R. & Skopek, T.R. (1998) A comparative study of in vivo mutation assays: analysis of hprt, lacI, cII/cI and as mutational targets for N-nitroso-N-methylurea and benzo[a]pyrene in big blue mice. Mutation Research, 421(1), 121-136.
109.Müller, W.E.G., Maidhof, A., Taschner, H. & Zahn, R.K. (1977) Virazole (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide): a cytostatic agent. Biochemical Pharmacology, 26(11), 1071-1075.
110.Narayana, K., D’Souza, U.J. & Seetharama Rao, K.P. (2002) The genotoxic and cytotoxic effects of ribavirin in rat bone marrow. Mutation Research, 521(1-2), 179-185.
111.Neerukonda, S.N. & Katneni, U. (2020) A review on SARS-CoV-2 virology, pathophysiology, animal models, and anti-viral interventions. Pathogens (Basel, Switzerland), 9(6), 426.
112.Nesslany, F. (2017) The current limitations of in vitro genotoxicity testing and their relevance to the in vivo situation. Food and Chemical Toxicology, 106, 609-615.
113.Nicklas, J.A., Albertini, R.J., Vacek, P.M., Ardell, S.K., Carter, E.W., McDiarmid, M.A. et al. (2015) Mutagenicity monitoring following battlefield exposures: molecular analysis of HPRT mutations in gulf war I veterans exposed to depleted uranium. Environmental and Molecular Mutagenesis, 56(7), 594-608.
114.OECD 2016 Test No. 476: In vitro mammalian cell gene mutation tests using the Hprt and xprt genes. https://doi.org/10.1787/9789264243088-en
115.OECD 2020 Test no. 488: transgenic rodent somatic and germ cell gene mutation assays. https://doi.org/10.1787/9789264203907-en
116.Olivero, O.A. et al. (1998) AZT, a genotoxic transplacental carcinogen in rodents, is incorporated into human fetal and maternal DNA. JAIDS Journal of Acquired Immune Deficiency Syndromes, 17(4), 477-483.
117.Oshiro, Y., Piper, C.E., Soelter, S.G., Balwierz, P.S. & Garriott, M.L. (1992) Genotoxic properties of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU). Fundamental and Applied Toxicology, 18(4), 491-498.
118.Painter, G.R., Bowen, R.A., Bluemling, G.R., DeBergh, J., Edpuganti, V., Gruddanti, P.R. et al. (2019) The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antiviral Research, 171, 104597.
119.Painter, G.R., Natchus, M.G., Cohen, O., Holman, W. & Painter, W.P. (2021a) Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19. Current Opinion in Virology, 50, 17-22.
120.Painter, W.P., Holman, W., Bush, J.A., Almazedi, F., Malik, H., Eraut, N.C.J.E. et al. (2021b) Human safety, tolerability, and pharmacokinetics of Molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 65(5), e02428-20.
121.Poirier, M.C., Olivero, O.A., Walker, D.M. & Walker, V.E. (2004) Perinatal genotoxicity and carcinogenicity of anti-retroviral nucleoside analog drugs. Toxicology and Applied Pharmacology, 199(2), 151-161.
122.Pronker, E.S., Weenen, T.C., Commandeur, H., Claassen, E.H.J.H.M. & Osterhaus, A.D.M.E. (2013) Risk in vaccine research and development quantified. PLoS One, 8(3), e57755.
123.Provost, G.S. et al. (1993) Transgenic systems for in vivo mutation analysis. Mutation Research, 288(1), 133-149.
124.Pruijssers, A.J. & Denison, M.R. (2019) Nucleoside analogues for the treatment of coronavirus infections. Current Opinion in Virology, 35, 57-62.
125.Qiu, L., Patterson, S.E., Bonnac, L.F. & Geraghty, R.J. (2018) Nucleobases and corresponding nucleosides display potent antiviral activities against dengue virus possibly through viral lethal mutagenesis. PLoS Neglected Tropical Diseases, 12(4), e0006421.
126.Rasmussen, S.A., Jamieson, D.J., Honein, M.A. & Petersen, L.R. (2016) Zika virus and birth defects: reviewing the evidence for causality. New England Journal of Medicine, 374(20), 1981-1987.
127.Rawstron, A.C., Rollinson, S.J., Richards, S., Short, M.A., English, A., Morgan, G.J. et al. (1999) The PNH phenotype cells that emerge in most patients after CAMPATH-1H therapy are present prior to treatment. British Journal of Haematology, 107(1), 148-153.
128.Revollo, J., Pearce, M.G., Petibone, D.M., Mittelstaedt, R.A. & Dobrovolsky, V.N. (2015) Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats. Mutagenesis, 30(3), 315-324.
129.Revollo, J.R., Crabtree, N.M., Pearce, M.G., Pacheco-Martinez, M.M. & Dobrovolsky, V.N. (2016) Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats. Environmental and Molecular Mutagenesis, 57(2), 114-124.
130.Robinson, D.R., Goodall, K., Albertini, R.J., O’Neill, J.P., Finette, B., Sala-Trepat, M. et al. (1994) An analysis of in vivo hprt mutant frequency in circulating T-lymphocytes in the normal human population: a comparison of four datasets. Mutation Research, 313(2-3), 227-247.
131.Russell, L.B., Selby, P.B., Von Halle, E., Sheridan, W. & Valcovic, L. (1981) Use of the mouse spot test in chemical mutagenesis: interpretation of past data and recommendations for future work. Mutation Research, 86(3), 355-379.
132.Salk, J.J. & Kennedy, S.R. (2020) Next-generation Genotoxicology: using modern sequencing technologies to assess somatic mutagenesis and cancer risk. Environmental and Molecular Mutagenesis, 61(1), 135-151.
133.Sanders, J.M., Monogue, M.L., Jodlowski, T.Z. & Cutrell, J.B. (2020) Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA, 323(18), 1824-1836.
134.Sangawa, H., Komeno, T., Nishikawa, H., Yoshida, A., Takahashi, K., Nomura, N. et al. (2013) Mechanism of action of T-705 Ribosyl triphosphate against influenza virus RNA polymerase. Antimicrobial Agents and Chemotherapy, 57(11), 5202-5208.
135.Schmitt, M.W., Kennedy, S.R., Salk, J.J., Fox, E.J., Hiatt, J.B. & Loeb, L.A. (2012) Detection of ultra-rare mutations by next-generation sequencing. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14508-14513.
136.Scott, D., Galloway, S.M., Marshall, R.R., Ishidate, M., Jr., Brusick, D., Ashby, J. et al. (1991) International Commission for Protection against Environmental Mutagens and Carcinogens. Genotoxicity under extreme culture conditions. A report from ICPEMC task group 9. Mutation Research, 257(2), 147-205.
137.Shan, W., Hong, D., Zhu, J. & Zhao, Q. (2020) Assessment of the potential adverse events related to ribavirin-interferon combination for novel coronavirus therapy. Computational and Mathematical Methods in Medicine, 2020, 1391583.
138.Shannon, A., Selisko, B., le, N.T.T., Huchting, J., Touret, F., Piorkowski, G. et al. (2020a) Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nature Communications, 11(1), 4682.
139.Shannon, A., Selisko, B., Le, N., Huchting, J., Touret, F., Piorkowski, G. (2020b) Favipiravir strikes the SARS-CoV-2 at its Achilles heel, the RNA polymerase. bioRxiv, 2020.05.15.098731. https://doi.org/10.1101/2020.05.15.098731
140.Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B. et al. (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronabviruses. Science Translational Medicine, 9(396), eaal3653.
141.Sheahan, T.P., Sims, A.C., Zhou, S., Graham, R.L., Pruijssers, A.J., Agostini, M.L. et al. (2020a) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine, 12(541), eabb5883.
142.Sheahan, T.P., Sims, A.C., Zhou, S., Graham, R.L., Hill, C.S., Leist, S.R. et al. (2020b) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 and multiple endemic, epidemic and bat coronavirus. bioRxiv. 2020.03.19.997890. https://doi.org/10.1101/2020.03.19.997890
143.Sidwell, R.W., Huffman, J.H., Khare, Lois, G.P., Allen, B., Witkowski, Roland, J.T. & Robins, K. (1972) Broad-spectrum antiviral activity of virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science, 177(4050), 705-706.
144.Sissoko, D., Laouenan, C., Folkesson, E., M’Lebing, A.B., Beavogui, A.H., Baize, S. et al. (2016) Experimental treatment with Favipiravir for Ebola virus disease (the JIKI trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Medicine, 13(3), e1001967.
145.Sledziewska, E. & Janion, C. (1980) Mutagenic specificity of N4-hydroxycytidine. Mutation Research, 70(1), 11-16.
146.Smith, E.C., Blanc, H., Vignuzzi, M. & Denison, M.R. (2013) Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathogens, 9, e1003565.
147.Snyder, R.D. (2009) An update on the genotoxicity and carcinogenicity of marketed pharmaceuticals with reference to in silico predictivity. Environmental and Molecular Mutagenesis, 50(6), 435-450.
148.Snyder, R.D. & Green, J.W. (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutation Research, 488(2), 151-169.
149.Staedtler, F., Suter, W. & Martus, H.J. (2004) Induction of A:T to G:C transition mutations by 5-(2-chloroethyl)-2′-deoxyuridine (CEDU), an antiviral pyrimidine nucleoside analogue, in the bone marrow of Muta mouse. Mutation Research, 568(2), 211-220.
150.Stein, D.S. & Moore, K.H.P. (2001) Phosphorylation of nucleoside analog antiretrovirals: a review for clinicians. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 21(1), 11-34.
151.Sticher, Z.M., Lu, G., Mitchell, D.G., Marlow, J., Moellering, L., Bluemling, G.R. et al. (2020) Analysis of the potential for N4-Hydroxycytidine to inhibit mitochondrial replication and function. Antimicrobial Agents and Chemotherapy, 64(2), e01719-19.
152.Stottmann, R. & Beier, D. (2014) ENU mutagenesis in the mouse. Current Protocols in Human Genetics, 82, 15.4.1-15.4.10.
153.Stuyver, L.J., McBrayer, T.R., Whitaker, T., Tharnish, P.M., Ramesh, M., Lostia, S. et al. (2004) Inhibition of the subgenomic hepatitis C virus replicon in huh-7 cells by 2′-deoxy-2′-fluorocytidine. Antimicrobial Agents and Chemotherapy, 48(2), 651-654.
154.Stuyver, L. et al. (2003) Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrobial Agents and Chemotherapy, 47(1), 244-254.
155.Suter, W., Plappert-Helbig, U., Glowienke, S., Poetter-Locher, F., Staedtler, F., Racine, R. et al. (2004) Induction of gene mutations by 5-(2-chloroethyl)-2′-deoxyuridine (CEDU), an antiviral pyrimidine nucleoside analogue. Mutation Research, 568(2), 195-209.
156.Tchesnokov, E.P., Gordon, C.J., Woolner, E., Kocinkova, D., Perry, J.K., Feng, J.Y. et al. (2020) Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action. The Journal of Biological Chemistry, 295(47), 16156-16165.
157.Toots, M., Yoon, J.J., Cox, R.M., Hart, M., Sticher, Z.M., Makhsous, N. et al. (2019) Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Science Translational Medicine, 11(515), eaax5866.
158.Toots, M., Yoon, J.J., Hart, M., Natchus, M.G., Painter, G.R. & Plemper, R.K. (2020) Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Translational Research, 218, 16-28.
159.Torous, D.K., Avlasevich, S.L., Khattab, M.G., Baig, A., Saubermann, L.J., Chen, Y. et al. (2020) Human blood PIG-A mutation and micronucleated reticulocyte flow cytometric assays: method optimization and evaluation of intra- and inter-subject variation. Environmental and Molecular Mutagenesis, 61(8), 807-819.
160.Torres, S.M., Walker, D.M., Carter, M.M., Cook, D.L., McCash, C.L., Cordova, E.M. et al. (2007) Mutagenicity of zidovudine, lamivudine, and abacavir following in vitro exposure of human lymphoblastoid cells or in utero exposure of CD-1 mice to single agents or drug combinations. Environmental and Molecular Mutagenesis, 48(3-4), 224-238.
161.Troth, S., Butterton, J., DeAnda, C.S., Escobar, P., Grobler, J., Hazuda, D. et al. (2021) Letter to the editor in response to Zhou et al. The Journal of Infectious Diseases, 224, 1442-1443.
162.Urakova, N. et al. (2018) β-d-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome. Journal of Virology, 92(3), e01965-17.
163.Valentine, C.C. et al. (2020) Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 33414-33425.
164.Vicenti, I., Zazzi, M. & Saladini, F. (2021) SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19. Expert Opinion on Therapeutic Patents, 31(4), 325-337.
165.Vivanti, A., Soheili, T.S., Cuccuini, W., Luce, S., Mandelbrot, L., Lechenadec, J. et al. (2015) Comparing genotoxic signatures in cord blood cells from neonates exposed in utero to zidovudine or tenofovir. AIDS, 29(11), 1319-1324.
166.Wahl, A., Gralinski, L.E., Johnson, C.E., Yao, W., Kovarova, M., Dinnon, K.H., III et al. (2021) SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature, 591(7850), 451-457.
167.Walker, V.E., Andrews, J.L., Upton, P.B., Skopek, T.R., DeBoer, J.G., Walker, D.M. et al. (1999) Detection of cyclophosphamide-induced mutations at the Hprt but not the lacI locus in splenic lymphocytes of exposed mice. Environmental and Molecular Mutagenesis, 34(2-3), 167-181.
168.Walker, V.E., Casciano, D.A. & Tweats, D.J. (2009) The Viracept-EMS case: impact and outlook. Toxicology Letters, 190(3), 333-339.
169.Walker, V.E., Gorelick, N.J., Andrews, J.L., Craft, T.R., DeBoer, J., Glickman, B.W. et al. (1996) Frequency and spectrum of ethylnitrosourea-induced mutation at the hprt and lacI loci in splenic lymphocytes of exposed lacI transgenic mice. Cancer Research, 56(20), 4654-4661.
170.Walker, V.E., Sisk, S.C., Upton, P.B., Wong, B.A. & Recio, L. (1997) In vivo mutagenicity of ethylene oxide at the hprt locus in T-lymphocytes of B6C3F1 lacI transgenic mice following inhalation exposure. Mutation Research, 392(3), 211-222.
171.Walker, V.E., Walker, D.M., Ghanayem, B.I. & Douglas, G.R. (2020) Analysis of biomarkers of DNA damage and mutagenicity in mice exposed to acrylonitrile. Chemical Research in Toxicology, 33(7), 1623-1632.
172.Walker, V.E. & Poirier, M.C. (2007) Special issue on health risks of perinatal exposure to nucleoside reverse transcriptase inhibitors. Environmental and Molecular Mutagenesis, 48(3-4), 159-165.
173.Wang, Y., Mittelstaedt, R.A., Wynne, R., Chen, Y., Cao, X., Muskhelishvili, L. et al. (2021) Genetic toxicity testing using human in vitro organotypic airway cultures: assessing DNA damage with the CometChip and mutagenesis by duplex sequencing. Environmental and Molecular Mutagenesis, 62(5), 306-318.
174.Ware, R.E., Pickens, C.V., DeCastro, C. & Howard, T.A. (2001) Circulating PIG-A mutant T lymphocytes in healthy adults and patients with bone marrow failure syndromes. Experimental Hematology, 29(12), 1403-1409.
175.Warren, T.K., Wells, J., Panchal, R.G., Stuthman, K.S., Garza, N.L., Van Tongeren, S.A. et al. (2014) Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature, 508(7496), 402-405.
176.Westover, J.B., Mathis, A., Taylor, R., Wandersee, L., Bailey, K.W., Sefing, E.J. et al. (2018) Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antiviral Research, 156, 38-45.
177.Wutzler, P. & Thust, R. (2001) Genetic risks of antiviral nucleoside analogues: a survey. Antiviral Research, 49(2), 55-74.
178.Xie, Xuping, Muruato AE, Zhang X, Lokugamage KG, Fontes-Garfias CR, Zou J, Liu J, Ren P, Balakrishnan M, Cihlar T, Tseng CK, Makino S, Menachery VD, Bilello JP, Shi PY 2020 A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. https://doi.org/10.1101/2020.06.22.165712
179.Xu, Y., Barauskas, O., Kim, C., Babusis, D., Murakami, E., Kornyeyev, D. et al. (2021) Off-target in vitro profiling demonstrates that Remdesivir is a highly selective antiviral agent. Antimicrobial Agents and Chemotherapy, 65(2), e02237-20.
180.Ye, F., Samuels, D.C., Clark, T. & Guo, Y. (2014) High-throughput sequencing in mitochondrial DNA research. Mitochondrion, 17, 157-163.
181.Yoon, J.J., Toots, M., Lee, S., Lee, M.E., Ludeke, B., Luczo, J.M. et al. (2018) Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrobial Agents and Chemotherapy, 62(8), e00766-18.
182.Zeller, A., Pfuhler, S., Albertini, S., Bringezu, F., Czich, A., Dietz, Y. et al. (2018) A critical appraisal of the sensitivity of in vivo genotoxicity assays in detecting human carcinogens. Mutagenesis, 33(2), 179-193.
183.Zeller, A., Koenig, J., Schmitt, G., Singer, T. & Guérard, M. (2013) Genotoxicity profile of Azidothymidine in vitro. Toxicological Sciences, 135(2), 317-327.
184.Zhou, S., Hill, C.S., Sarkar, S., Tse, L.V., Woodburn, B.M.D., Schinazi, R.F. et al. (2021a) β-d-N4-hydroxycytidine (NHC) inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. The Journal of Infectious Diseases, 224(3), 415-419.
185.Zhou, S., Hill, C.S., Woodburn, B.M.D., Schinazi, R.F. & Swanstrom, R. (2021b) Reply to Troth et al. The Journal of Infectious Diseases, 224, 1443-1444.